809 research outputs found

    Geodesic acoustic mode oscillation in the low frequency range

    Get PDF
    In order to understand the various appearances of geodesic acoustic modes (GAM) in experiments, the following specific problems are theoretically addressed: (1) The asymmetry of the potential field of GAMs, which is enhanced by the coupling with ion acoustic modes. It may affect GAMs in plasmas with electron temperatures higher than those of the ions. (2) The possible existence of GAMs in the lower frequency range: This is discussed in connection with the uniqueness of the kinetic response of the plasma to an external field associated with the geodesic curvature of the magnetic lines of force. (3) The extension of the theory to cover both tokamaks and helical systems: Differences between the helical-type and the tokamak-type GAMs are discussed in terms of their differences in connection length. In a device of mixed helicity, helical natured GAMs are predicted to appear depending on the intensity of the corresponding geodesic curvature and electron temperature

    Requirements for minerals and metals for 100% renewable scenarios

    Full text link
    © The Author(s) 2019. This chapter explores the magnitude of the changes in patterns of material use that will be associated with the increasing deployment of renewable energy and discusses the implications for sustainable development. In particular, this chapter focuses on the increased use of lithium and cobalt, metals which are used extensively in battery technologies, and silver used in solar cells. Consistent with the strong growth in renewable energy and electrification of the transport system required in a 1.5°C scenario, the material requirements also rise dramatically, particularly for cobalt and lithium. Scenarios developed for this study show that increasing recycling rates and material efficiency can significantly reduce primary demand for metals

    High--Energy Photon--Hadron Scattering in Holographic QCD

    Full text link
    This article provides an in-depth look at hadron high energy scattering by using gravity dual descriptions of strongly coupled gauge theories. Just like deeply inelastic scattering (DIS) and deeply virtual Compton scattering (DVCS) serve as clean experimental probes into non-perturbative internal structure of hadrons, elastic scattering amplitude of a hadron and a (virtual) "photon" in gravity dual can be exploited as a theoretical probe. Since the scattering amplitude at sufficiently high energy (small Bjorken x) is dominated by parton contributions (= Pomeron contributions) even in strong coupling regime, there is a chance to learn a lesson for generalized parton distribution (GPD) by using gravity dual models. We begin with refining derivation of Brower-Polchinski-Strassler-Tan (BPST) Pomeron kernel in gravity dual, paying particular attention to the role played by complex spin variable j. The BPST Pomeron on warped spacetime consists of a Kaluza-Klein tower of 4D Pomerons with non-linear trajectories, and we clarify the relation between Pomeron couplings and Pomeron form factor. We emphasize that the saddle point value j^* of the scattering amplitude in the complex j-plane representation is a very important concept in understanding qualitative behavior of the scattering amplitude. The total Pomeron contribution to the scattering is decomposed into the saddle point contribution and at most a finite number of pole contributions, and when the pole contributions are absent (which we call saddle point phase), kinematical variable (q,x,t) dependence of ln (1/q) evolution and ln(1/x) evolution parameters gamma_eff. and lambda_eff. in DIS and t-slope parameter B of DVCS in HERA experiment are all reproduced qualitatively in gravity dual

    Chiral Compactification on a Square

    Full text link
    We study quantum field theory in six dimensions with two of them compactified on a square. A simple boundary condition is the identification of two pairs of adjacent sides of the square such that the values of a field at two identified points differ by an arbitrary phase. This allows a chiral fermion content for the four-dimensional theory obtained after integrating over the square. We find that nontrivial solutions for the field equations exist only when the phase is a multiple of \pi/2, so that this compactification turns out to be equivalent to a T^2/Z_4 orbifold associated with toroidal boundary conditions that are either periodic or anti-periodic. The equality of the Lagrangian densities at the identified points in conjunction with six-dimensional Lorentz invariance leads to an exact Z_8\times Z_2 symmetry, where the Z_2 parity ensures the stability of the lightest Kaluza-Klein particle.Comment: 28 pages, latex. References added. Clarifying remarks included in section 2. Minor corrections made in section

    Classification of the severity of diabetic neuropathy: a new approach taking uncertainties into account using fuzzy logic

    Get PDF
    OBJECTIVE: This study proposes a new approach that considers uncertainty in predicting and quantifying the presence and severity of diabetic peripheral neuropathy. METHODS: A rule-based fuzzy expert system was designed by four experts in diabetic neuropathy. The model variables were used to classify neuropathy in diabetic patients, defining it as mild, moderate, or severe. System performance was evaluated by means of the Kappa agreement measure, comparing the results of the model with those generated by the experts in an assessment of 50 patients. Accuracy was evaluated by an ROC curve analysis obtained based on 50 other cases; the results of those clinical assessments were considered to be the gold standard. RESULTS: According to the Kappa analysis, the model was in moderate agreement with expert opinions. The ROC analysis (evaluation of accuracy) determined an area under the curve equal to 0.91, demonstrating very good consistency in classifying patients with diabetic neuropathy. CONCLUSION: The model efficiently classified diabetic patients with different degrees of neuropathy severity. In addition, the model provides a way to quantify diabetic neuropathy severity and allows a more accurate patient condition assessment
    • …
    corecore